
Chapter 5 
 

5.1 As part of an air show, a jet airplane in straight and steady flight at Mach 0.4, passes by an observer 

at a distance of 300m. Assuming the jet has the directivity of a compact longitudinal quadrupole, aligned 

with the flight direction determine the variation in frequency and amplitude of the sound heard by the 

observer as a function of time. Normalize your answers based on the values heard when the airplane is at 

its closest approach. Plot your results in terms of the angle of the airplane to the observer from 20 to 160 

degrees, with 90 degrees being defined at closest approach. Normalize the curves on their maximum 

values in this range. You may ignore the effect of the ground or any surrounding structures and consider 

the observer to be in the far field.  

Worked example solution 

 

5.2 Sound is made by a 5-m radius one-bladed rotor spinning in air with angular 

velocity Ω as shown. The rotor chordlength is small and so the rotor may be 

approximated as a straight line. The sound is heard by an observer located in 

the plane of the rotor at a distance of 20 m from the axis of rotation.  (a) Find 

an expression for the retarded time 𝜏 in terms of observer time 𝑡, Ω and radial 

distance on the rotor from the hub 𝑅. Note that this expression is simple to 

write as explicit for 𝑡 (which is fine for your answer) but difficult or impossible to write as explicit for 𝜏. (b) 

Plot three curves on the same axes showing the retarded time as a function of observer time for the rotor 

blade tip, each normalized by multiplying by Ω, . The plots should cover one rotation and the three curves 

should correspond to tip Mach numbers of  0.3, 0.7 and 1.3. 

 

5.3 The tip of a helicopter rotor blade of radius 𝑅𝑜 = 5𝑚 spinning at angular velocity Ω becomes damaged, 

and the resulting tip geometry produces a loud whistle. The sound source is determined to be sinusoidal 

force in the radial direction, of amplitude 7 Newtons, produced on the blade tip. With the helicopter in 

hover the tip Mach number is 0.5 the frequency of the force fluctuation is 5kHz. We are concerned with 

determining the sound heard by an observer 200m away from the rotor hub in the plane of the rotor. An 

engineer proposes using equation 5.3.1 to solve this problem: 

𝑝′(𝐱, 𝑡) = −𝑅𝑒 {
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(a) Does this equation assume that the noise generating portion of the blade is acoustically compact? If 

so, explain exactly how this assumption is used in formulating this equation.  

(b) One route to solving the above equation is to use the relationship between the observer divergence 

and the observer time derivative.  
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Explain the physical basis of this relation, and justify its quantitative form. 

(c) Find an expression for �̂�𝑖 in terms of Ω and source time. Determine 𝑀𝑟 as a function of source time, 

making any appropriate simplifications. Evaluate Ω for the conditions given above.  

(d) Give the relationship that is best to use to give source time as a function of observer time. Starting 

with this relation explain the mathematical origin of the Doppler shift in frequency. What will be the 

maximum and minimum frequencies heard by the observer in this case? 

(e) Another route to solving the above equation will involve determining at some stage the derivative  

𝜕[�̂�𝑖]
𝜏=𝜏∗ 𝜕𝑥𝑖⁄  (amongst others). What is 𝜕[�̂�𝑖]

𝜏=𝜏∗ 𝜕𝑥𝑖⁄  in terms of 𝐱, 𝑀𝑟, Ω and 𝑐∞? 

 

5.4. Consider the sound is made by a one-bladed rotor of radius 𝑅𝑜 = 5 𝑚 spinning in air with angular 

velocity Ω as shown, as heard by an observer at 𝑥𝑖 = (20 𝑚, 0, 0). Verify that the relationship between 

observer and source time for the blade planform centerline is, 

Ω𝜏 = Ω𝑡 − 𝑀𝑡𝑖𝑝√(
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where 𝑀𝑡𝑖𝑝 = Ω𝑅𝑜/𝑐∞. Reformulate this expression to give, as a function of source time, the radial 

position on the blade centerline that emits the sound heard by the observer at 𝑡. Write a short Matlab 

code that implements this relationship as a function giving this radius 𝑅/𝑅𝑜 vs 

the blade orientation Ω𝜏 (i.e the effective blade centerline shape as heard by 

the observer). The function inputs should be 𝑥1, 𝑅𝑜, Ω𝑡 and 𝑀𝑡𝑖𝑝. Be careful to 

ensure that the blade positions are consistent with reality and that your Ω𝜏 

values refer to the correct portion of the blade rotation. Use your function to 

plot the apparent blade centerline shape at 𝑀𝑡𝑖𝑝 = 0.3, and 0.7 for Ω𝑡 = 𝜋/2   
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Solution Problem 5.1 

To solve this problem, we begin with the 5.2.15 dropping all but the quadrupole term and writing in 

terms of the acoustic pressure 
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For a truly compact source 
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Or, using equation 5.2.16 
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The sound field for by a compact longitudinal quadrupole in a quiescent environment is given by 

equation 3.7.5, which we re-write as 
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Comparing these two equations, we see that  
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Thus the noise of our aircraft is given by 
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To determine the retarded time we have to consider the kinematics of the problem which are illustrated 

below 



 

Considering a coordinate system origin fixed 

at the point in space where the aircraft is 

located at the instant shown, then the 

relationship for 𝜏∗  is given by equation 5.3.3, 

and thus the far-field approximation is given 

by equation 5.3.4 
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Thus the far-field sound becomes 
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Giving the source zero absolute phase shift then this becomes 
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The sound frequency therefore varies due to Doppler shift as  

1
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1
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where 𝑀𝑠 is the aircraft Mach number. Likewise, the amplitude varies as 
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Where the magnitude has been dropped since 𝑀𝑟 < 1. These functions are plotted using the Matlab 

script below. Note that by using the result in this way (with variable aircraft position) we are essentially 

re-defining the origin of x at each point along the flight path. 

  

𝜃 
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clear all;close all; 

  
th=[20:160]*pi/180; 
m=0.4; 
fm=1./(1-m*cos(th)); 
x2=300;x=x2./sin(th); 
am=cos(th).^2./(1-m*cos(th)).^3./x; 

  
figure 
plot(th*180/pi,fm/max(fm),'k-',th*180/pi,am/max(am),'b-'); 
legend('Frequency modulation','Amplitude modulation'); 
xlabel('\theta (deg.)'); 
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