Chapter 6

6.1 Consider two-dimensional ideal flow over a circular cylinder without circulation of unit radius, with
free stream velocity U, in the x; direction. (a) Write down analytic expressions for the streamfunction
and velocity magnitude as functions of position, and (b) analytical expressions for the drift functions X,
and X3. (c) Write a short Matlab program to determine and plot contours of the drift functions X; and X,
for X; and X, = —2 to 2 as functions of position (x1, x;) for x; and x,=-2 to 2.

[Worked Example Solution|

6.2 An initially uniform mean flow of velocity U, containing turbulence flows over a two dimensional
circular cylinder of unit radius. Consider the flow on the stagnation streamline upstream of the cylinder,
where the mean flow is accurately described by the ideal flow solution for the cylinder without circulation.
(a) Determine expressions for the drift function gradients as function of distance along the streamline. (b)
Determine the displacement vectors as a function of this distance. (c) Determine the complex amplitude
of the vorticity vector for the portion of the turbulence initially at wavevector K, in terms of its undistorted
amplitude and the drift function, as a function of this distance. (d) Determine the fluctuating velocity
vector of this same portion, in terms of the initial vorticity amplitude as a function of this distance. (e)
Continuing from part (c), what is the actual wave vector of the turbulence as a function of this distance?
(f) What assumptions must hold for your answers in parts (c) through (e) to be accurate?

6.3. The flow of a free stream over the nose of a two dimensional body is accurately described by the ideal
flow complex velocity

Usd

wi(z)=Uy +——

2nz
where d = 0.5 m.
(a) Write down analytic expressions for the streamfunction and velocity magnitude as functions of
position.
(b) Write down analytic expressions for the drift functions X, and X;.
(c) Write a short Matlab program to determine and plot contours of the drift functions X; and X, for X;
and X, = —0.6 to 0.6 as functions of position (x4, x,) for x; and x,=-0.6 to 0.6.
(d) Extend your code to determine and plot the variation in relative displacement vector lengths |51V /h, |
and |51 /h,| along a streamline initiated in the freestream at x, = 0.2 as a function of x; for x; =-0.6
to 0.6

6.4 Use the definition of the wavenumber transform to write Equation 6.5.5 (an expression for the sound

radiated from a flat plate airfoil in a moving medium) in terms of Ap (kio), kéo), w). Define kio) and kéo)

in your solution.

[ Worked Example Solution|




Solution Problem 6.1
Solution

(a) Following equation 2.7.16 the complex velocity and complex potential for ideal flow past a unit
radius circular cylinder of velocity U, at an angle @ = 0, are

W'(2) = Uy — Uy /22
w(z) =Uyxz+Uy/z

where we are placing the origin at the center of the cylinder (z; = 0). The streamfunction is the
imaginary part of the complex potential, and so since z = x; + ix, and 1/z = z*/|z|? = (x; — ix;)/7?
where 72 = xZ + x2, then

ll) = Uooxz - Uoon/r2
Noting that 1/z2 = z*2/|z|* = (x% 4 x2 — 2ix,x,)/|z|* = (% = 2ixyx,) /r*

We see that
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(b) Surfaces of constant X, and X5 are streamsurfaces of the flow, but X, and X; must become x, and
X3 at upstream infinity. This works in the spanwise direction if, simply,
X3 = x3
and in the cross stream direction if X, = /U, so that,
Xy =Xy — x /77

(c) To get X; we need to integrate

do
U

streamline

This can be done numerically as part of a Matlab code for calculating the streamlines (contours of X,) by
directly integrating w'(z). Note the uneven spacing of the streamlines in the following code in order to
sufficiently define the functions in stagnation region of the cylinder. The color scale in the plot
corresponds to Xj.



Matlab code:

clear all;close all;
X2=[-2:.25:-.5 -.4:.1:-.1 -.05 -.02 -.01 -.005 0 0.005 0.01 0.02 0.05
L1:.1:.4 .5:.25:2];
step=.01;maxstep=3000;
for n=1l:length (X2)
nstep=0;z=-10+1*X2 (n);X1(1,n)=-10;
while nstep<maxstep
w=1-1/2"2;
zl=z+conj (w) *step;
wl=1-1/21"2;
z=z+con]j (w+wl) *step/2;
nstep=nstep+1l;
x1 (nstep,n)=real (z) ;x2 (nstep,n)=imag(z) ;
end
end
X1l=repmat ([1:3000] '*step-10, [1 length(X2)]);

figure

contourf (x1,x2,X1,[-2:.1:2],"'k:"); hold on;
plot(x1l,x2,'k=-");
fill(cos([0:360]*pi/180),sin([0:360]*pi/180), 'w");
axis image;

x1im([-2 21);ylim([-2 2]);

colorbar
Plot:
1.5
0.5 ~ -0.5
~ -0
-0.5




Solution Problem 6.4

Equation 6.5.5 is

AB(y, w)e - ikoM(x1—y1) dy,dys
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The limits of the integral can be changed since the pressure jump is zero for all points not on the airfoil
so the right hand side becomes, with rearrangement,
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Rearranging
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Where
X X
KO =k (Z-m) KD = ko (22
T, T,

Definition of the wavenumber transform
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Substituting this into the above equation
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