Chapter 7

7.1 (a) Prove that Howe's result, equation 7.3.4, is consistent with the Kutta-Joukowski theorem, equation 2.7.23, by considering first a line vortex of strength Γ, parallel to x_{3}, located at $x_{2}=h$, and traveling in the x_{1} direction at speed U
(b) Consider a two-dimensional circular cylinder centered on the x_{3} axis of radius R. Determine the unsteady force components per unit span exerted by the cylinder on the fluid, as functions of time, due to the passage of the above line vortex in the x_{1} direction at speed U. Assume there is no circulation generated around the cylinder.
(c) Plot the time trace of the force components, normalized on $\rho_{o} U \Gamma$ as a function of normalized time $t U / R$ from -2 to 2 , for $h / R=1.5$.
(d) What equation would you use to determine the far field sound radiated by a small acoustically compact spanwise portion of the cylinder?

Worked example solution

Solution Problem 7.1

(a) Equation 7.3.4 gives the force applied to the fluid by a body as

$$
F_{i}=-\rho_{o} \int_{V} \nabla Y_{i} .(\boldsymbol{\omega} \times \mathbf{v}) d V
$$

Consider a line vortex of strength Γ parallel to the x_{3} axis located at $x_{2}=h$ and traveling along the x_{1} axis at speed U. For this we have

$$
\boldsymbol{\omega}=\Gamma \delta\left(x_{1}-U t\right) \delta\left(x_{2}-h\right) \mathbf{e}_{3}
$$

where $\mathbf{e}_{\mathbf{i}}$ denotes the unit vector in the direction of x_{i}. The velocity of the vortex $\mathbf{v}=U \mathbf{e}_{\mathbf{1}}$, and so

$$
(\boldsymbol{\omega} \times \mathbf{v})=U \Gamma \delta\left(x_{1}-U t\right) \delta\left(x_{2}-h\right) \mathbf{e}_{2}
$$

Clearly, therefore, the vortex can only generate a force in the x_{2} direction. Consider thus the Kirchhoff coordinate for a unit free stream in the x_{2} direction, which will give $\nabla Y_{2}=\mathbf{e}_{2}$, and so

$$
F_{2}=-\rho_{o} \int_{V} U \Gamma \delta\left(x_{1}-U t\right) \delta\left(x_{2}-h\right) d V
$$

and so the force per unit span in the x_{3} direction is

$$
f_{2}=-\rho_{o} U \Gamma
$$

Now, if we change our frame of reference to be traveling with the vortex then we will see a free stream in the x_{1} direction of velocity $U_{\infty}=-U$. Therefore, in terms of this free stream velocity, we have

$$
f_{2}=\rho_{o} U_{\infty} \Gamma
$$

This recall is the force on the fluid. Thus the force on the vortex must be,

$$
f_{2}=-\rho_{o} U_{\infty} \Gamma
$$

(b) For this problem we need to determine the Kirchhoff coordinate gradient ∇Y_{i} for the flow in the x_{i} direction around the cylinder. To get both F_{1} and F_{2} components we will have to consider $i=1,2$. The complex velocity for acyclic flow past a circular cylinder is given by equation 2.7.16,

$$
w^{\prime}(z)=e^{-i \alpha}-\frac{R^{2} e^{i \alpha}}{z^{2}}
$$

Where we have taken $U_{\infty}=1$ and where $\alpha=0$ for $i=1$ and $\alpha=\pi / 2$ for $i=2$. Now,

$$
\nabla Y_{i}=\operatorname{Re}\left\{w^{\prime}(z)\right\} \mathbf{e}_{\mathbf{1}}-\operatorname{Im}\left\{w^{\prime}(z)\right\} \mathbf{e}_{\mathbf{2}}
$$

So,

$$
\nabla Y_{i} \cdot(\boldsymbol{\omega} \times \mathbf{v})=-\operatorname{Im}\left\{w^{\prime}(z)\right\} U \Gamma \delta\left(x_{1}-U t\right) \delta\left(x_{2}-h\right)
$$

Now,

$$
\begin{aligned}
\operatorname{Im}\left\{w^{\prime}(z)\right\} & =-\sin \alpha-\operatorname{Im}\left\{\frac{R^{2}(\cos \alpha+i \sin \alpha)\left(x_{1}^{2}-x_{2}^{2}-2 i x_{1} x_{2}\right)}{r^{4}}\right\} \\
& =-\sin \alpha-\frac{R^{2}}{r^{4}}\left[\left(x_{1}^{2}-x_{2}^{2}\right) \sin \alpha-2 x_{1} x_{2} \cos \alpha\right]
\end{aligned}
$$

where $r^{2}=x_{1}^{2}+x_{2}^{2}$. So,

$$
f_{i}=-\rho_{o} U \Gamma\left\{\sin \alpha+\frac{R^{2}}{\left(U^{2} t^{2}+h^{2}\right)^{2}}\left[\left(U^{2} t^{2}-h^{2}\right) \sin \alpha-2 U t h \cos \alpha\right]\right\}
$$

So,

$$
f_{1}=\rho_{o} U \Gamma \frac{2 U t h R^{2}}{\left(U^{2} t^{2}+h^{2}\right)^{2}}
$$

and

$$
f_{2}=-\rho_{o} U \Gamma\left\{1+\frac{R^{2}\left(U^{2} t^{2}-h^{2}\right)}{\left(U^{2} t^{2}+h^{2}\right)^{2}}\right\}
$$

(c) The above expressions are normalized as

$$
\frac{f_{1}}{\rho_{o} U \Gamma}=\frac{2 \frac{U t}{R} \frac{h}{R}}{\left(\left[\frac{U t}{R}\right]^{2}+\left[\frac{h}{R}\right]^{2}\right)^{2}}
$$

and

$$
\frac{f_{2}}{\rho_{o} U \Gamma}=-1-\frac{\left(\left[\frac{U t}{R}\right]^{2}-\left[\frac{h}{R}\right]^{2}\right)}{\left(\left[\frac{U t}{R}\right]^{2}+\left[\frac{h}{R}\right]^{2}\right)^{2}}
$$

Plotting code and plot:

```
clear all; close all;
tn=-2:.01:2;
hR=1.5;
f1n=2*tn*hR./(tn.^2+hR.^2).^2;
f2n=-1-(tn.^2-hR.^2)./(tn.^^2+hR.^2).^2;
figure
subplot(2,1,1)
plot(tn,f1n,'k-');
xlabel('tU/R');ylabel('f_1/\rho_oU\Gamma');
subplot(2,1,2)
plot(tn,f2n,'k-');
xlabel('tU/R');ylabel('f_2/\rho_oU\Gamma');
```


(d) Equation 4.4.7

$$
p^{\prime}=\frac{x_{i}}{4 \pi|\mathbf{x}|^{2} c_{\infty}} \frac{\partial F_{i}}{\partial t}
$$

