
Chapter 7 
7.1 (a) Prove that Howe’s result, equation 7.3.4, is consistent with the Kutta-Joukowski theorem, equation 

2.7.23, by considering first a line vortex of strength Γ, parallel to 𝑥3, located at 𝑥2 = ℎ, and traveling in 

the 𝑥1 direction at speed 𝑈 

(b) Consider a two-dimensional circular cylinder centered on the 𝑥3 axis of radius 𝑅. Determine the 

unsteady force components per unit span exerted by the cylinder on the fluid, as functions of time, due 

to the passage of the above line vortex in the 𝑥1 direction at speed 𝑈.  Assume there is no circulation 

generated around the cylinder. 

(c) Plot the time trace of the force components, normalized on 𝜌𝑜𝑈Γ as a function of normalized time 

𝑡𝑈/𝑅 from -2 to 2, for ℎ/𝑅 = 1.5.  

(d) What equation would you use to determine the far field sound radiated by a small acoustically compact 

spanwise portion of the cylinder? 

Worked example solution 

  



Solution Problem 7.1 

(a) Equation 7.3.4 gives the force applied to the fluid by a body as  

𝐹𝑖 = −𝜌𝑜 ∫ ∇𝑌𝑖. (𝛚 × 𝐯) 𝑑𝑉

𝑉

 

Consider a line vortex of strength Γ parallel to the 𝑥3 axis located at 𝑥2 = ℎ and traveling along the 𝑥1 

axis at speed 𝑈. For this we have 

𝛚 = Γ𝛿(𝑥1 − 𝑈𝑡)𝛿(𝑥2 − ℎ)𝐞𝟑 

where 𝐞𝐢 denotes the unit vector in the direction of 𝑥𝑖. The velocity of the vortex 𝐯 = 𝑈𝐞𝟏, and so  

(𝛚 × 𝐯) = 𝑈Γ𝛿(𝑥1 − 𝑈𝑡)𝛿(𝑥2 − ℎ)𝐞𝟐 

Clearly, therefore, the vortex can only generate a force in the 𝑥2 direction. Consider thus the Kirchhoff 

coordinate for a unit free stream in the 𝑥2 direction, which will give ∇𝑌2 = 𝐞𝟐, and so  

𝐹2 = −𝜌𝑜 ∫ 𝑈Γ𝛿(𝑥1 − 𝑈𝑡)𝛿(𝑥2 − ℎ) 𝑑𝑉

𝑉

 

and so the force per unit span in the 𝑥3 direction is  

𝑓2 = −𝜌𝑜𝑈Γ 

Now, if we change our frame of reference to be traveling with the vortex then we will see a free stream 

in the 𝑥1 direction of velocity 𝑈∞ =– 𝑈. Therefore, in terms of this free stream velocity, we have 

𝑓2 = 𝜌𝑜𝑈∞Γ 

This recall is the force on the fluid. Thus the force on the vortex must be, 

𝑓2 = −𝜌𝑜𝑈∞Γ 

(b) For this problem we need to determine the Kirchhoff coordinate gradient ∇𝑌𝑖 for the flow in the 𝑥𝑖 

direction around the cylinder. To get both 𝐹1 and 𝐹2 components we will have to consider 𝑖 = 1,2. The 

complex velocity for acyclic flow past a circular cylinder is given by equation 2.7.16, 

𝑤′(𝑧) = 𝑒−𝑖𝛼 −
𝑅2𝑒𝑖𝛼

𝑧2
 

Where we have taken 𝑈∞ = 1 and where 𝛼 = 0 for 𝑖 = 1 and 𝛼 = 𝜋/2 for 𝑖 = 2. Now, 

∇𝑌𝑖 = 𝑅𝑒{𝑤′(𝑧)}𝐞𝟏 − 𝐼𝑚{𝑤′(𝑧)}𝐞𝟐 

So,  

∇𝑌𝑖 . (𝛚 × 𝐯) = −𝐼𝑚{𝑤′(𝑧)}𝑈Γ𝛿(𝑥1 − 𝑈𝑡)𝛿(𝑥2 − ℎ) 

Now, 



𝐼𝑚{𝑤′(𝑧)} = − sin 𝛼 − 𝐼𝑚 {
𝑅2(cos 𝛼 + 𝑖 sin 𝛼)(𝑥1

2 − 𝑥2
2 − 2𝑖𝑥1𝑥2)

𝑟4 }  

= − sin 𝛼 −
𝑅2

𝑟4
[(𝑥1

2 − 𝑥2
2) sin 𝛼 − 2𝑥1𝑥2 cos 𝛼] 

where 𝑟2 = 𝑥1
2 + 𝑥2

2. So,  

𝑓𝑖 = −𝜌𝑜𝑈Γ {sin 𝛼 +
𝑅2

(𝑈2𝑡2 + ℎ2)2
[(𝑈2𝑡2 − ℎ2) sin 𝛼 − 2𝑈𝑡ℎ cos 𝛼]} 

So, 

𝑓1 = 𝜌𝑜𝑈Γ
2𝑈𝑡ℎ𝑅2

(𝑈2𝑡2 + ℎ2)2
 

and 

𝑓2 = −𝜌𝑜𝑈Γ {1 +
𝑅2(𝑈2𝑡2 − ℎ2)

(𝑈2𝑡2 + ℎ2)2 } 

(c) The above expressions are normalized as 

𝑓1

𝜌𝑜𝑈Γ
=

2
𝑈𝑡
𝑅

ℎ
𝑅

([
𝑈𝑡
𝑅 ]

2

+ [
ℎ
𝑅]

2

)

2 

and 

𝑓2

𝜌𝑜𝑈Γ
= −1 −

([
𝑈𝑡
𝑅 ]

2

− [
ℎ
𝑅]

2

)

([
𝑈𝑡
𝑅 ]

2

+ [
ℎ
𝑅]

2

)

2 

Plotting code and plot: 

clear all; close all; 
tn=-2:.01:2; 
hR=1.5; 

  
f1n=2*tn*hR./(tn.^2+hR.^2).^2; 
f2n=-1-(tn.^2-hR.^2)./(tn.^2+hR.^2).^2; 

  
figure 
subplot(2,1,1) 
plot(tn,f1n,'k-'); 
xlabel('tU/R');ylabel('f_1/\rho_oU\Gamma'); 
subplot(2,1,2) 
plot(tn,f2n,'k-'); 
xlabel('tU/R');ylabel('f_2/\rho_oU\Gamma'); 



 

(d) Equation 4.4.7  

𝑝′ =
𝑥𝑖

4𝜋|𝐱|2𝑐∞

𝜕𝐹𝑖

𝜕𝑡
 


